Practice reading and writing data, more dplyr and a plot.
Download CO2 emissions per capita from Our World in Data into the directory of this post.
Assign the location of the file to file_csv. The data should be in the same directory as this file
Read the data into R and assign it to emissions
file_csv <- here("_posts",
"2022-02-20-reading-and-writing-data",
"co-emissions-per-capita (3).csv")
emissions <-read_csv(file_csv)
emissionsemissions
# A tibble: 23,307 × 4
Entity Code Year `Annual CO2 emissions (per capita)`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# … with 23,297 more rows
emissions data THENuse clean_names from the janitor package to make the names easier to work with assign the outputs to tidy_emissions show the first 10 rows of tidy_emissions
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 23,307 × 4
entity code year annual_co2_emissions_per_capita
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# … with 23,297 more rows
tidy_emissions THEN use filter to extract rows with year==1993 THEN use skim to calculate the descriptive statistics| Name | Piped data |
| Number of rows | 227 |
| Number of columns | 4 |
| _______________________ | |
| Column type frequency: | |
| character | 2 |
| numeric | 2 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| entity | 0 | 1.00 | 4 | 32 | 0 | 227 | 0 |
| code | 12 | 0.95 | 3 | 8 | 0 | 215 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| year | 0 | 1 | 1993.00 | 0.00 | 1993.00 | 1993.00 | 1993.00 | 1993.00 | 1993.00 | ▁▁▇▁▁ |
| annual_co2_emissions_per_capita | 0 | 1 | 5.07 | 6.96 | 0.04 | 0.59 | 2.76 | 7.38 | 61.19 | ▇▁▁▁▁ |
7.12 observations have a missing code. How are these observations different? start with tidy_emissions then extract rows with year == 1993 and are missing a code.
# A tibble: 12 × 4
entity code year annual_co2_emissions_per_ca…
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 1993 1.04
2 Asia <NA> 1993 2.24
3 Asia (excl. China & India) <NA> 1993 3.22
4 EU-27 <NA> 1993 8.52
5 EU-28 <NA> 1993 8.70
6 Europe <NA> 1993 9.35
7 Europe (excl. EU-27) <NA> 1993 10.5
8 Europe (excl. EU-28) <NA> 1993 10.6
9 North America <NA> 1993 14.0
10 North America (excl. USA) <NA> 1993 4.97
11 Oceania <NA> 1993 11.5
12 South America <NA> 1993 2.09
Entities that are not countries do not have country codes.
use filter to extract rows with year == 1993 and without missing codes THEN use select to drop the year variable THEN use rename to change the variable entity to country assign the output to emissions_1993
emissions_1993 <- tidy_emissions %>%
filter(year ==1993, !is.na(code)) %>%
select(-year) %>%
rename(country = entity)
annual_co2_emissions_per_capita?start with emissions_1993 THEN use slice_max to extract the 15 rows with the annual_co2_emissions_per_capita assign the output to max_15_emitters
annual_co2_emissions_per_capita?start with emissions_1993 THEN use slice_min to extract the 15 rows with the lowest values assign the output to min_15_emitters
bind_rows to bind together the max_15_emitters and min_15_emitters assign the output to max_min_15max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15 to 3 file formatsmax_min_15 %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15 %>% write_tsv("max_min_15.tsv") # tab separated
max_min_15 %>% write_delim("max_min_15.psv", delim = "l") # pipe-separated
max_min_15_csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "l") # pipe-separated
setdiff to check for any differences among max_min_15_csv, max_min_15_tsv and max_min_15_psvsetdiff(max_min_15_csv, max_min_15_tsv)
# A tibble: 0 × 3
# … with 3 variables: country <chr>, code <chr>,
# annual_co2_emissions_per_capita <dbl>
Are there any differences?
country in max_min_15 for plotting and assign to max_min_15_plot_datastart with emissions_1993 Then use mutate to reorder country according to annual_co2_emissions_per_capita
max_min_15_plot_data <- max_min_15 %>%
mutate(country = reorder(country, annual_co2_emissions_per_capita))
max_min_15_plot_dataggplot(data = max_min_15_plot_data,
mapping = aes(x= annual_co2_emissions_per_capita, y= country))+
geom_col()+
labs(title= "The top 15 and bottom 15 per capita C02 emissions",
subtitle= "for 1993",
x= NULL,
y= NULL)

preview: preview.png